
CSC363 Tutorial 7

Paul “sushi enjoyer” Zhang

University of Humongus Chungus Amogus

March 3, 2021

1 / 20



Learning objectives this tutorial

By the end of this tutorial, you should...
I Have turingmachinesimulator.com bookmarked in Microsoft Edge

(or whichever browser you use).
I Feel great, because you will probably never have to touch upon any

computability theory again.1

I Understand p-reducibility and have a practical example in the back of
your mind.

I Fall in love with polynomials. They are so nice!
(no readings this week cuz we didn’t really go over anything new)

1Oh wait! You have an assignment due on computability theory. ;-; If you want
unauthorized aids help, stay for my office hours! :D

2 / 20

turingmachinesimulator.com


More Turing Machines.
Task: Answer the following:

do you like optimwizing cowde? uwu

Answer: Of course you do.
3 / 20



More Turing Machines.
Task: Answer the following:

do you like optimwizing cowde? uwu

Answer: Of course you do.
3 / 20



Turing machines are back! :D
Task: Decrypt what this Turing machine is doing (i.e. find the language
that this Turing machine accepts). Our alphabet is {0, 1}.

State 0 1 �
q0 (q1, �, R) reject accept
q1 (q1, 0, R) (q1, 1, R) (q2, �, L)
q2 reject (q3, �, L) reject
q3 (q3, 0, L) (q3, 1, L) (q0, �, R)

Hint:

4 / 20



Turing machines are back! :D

Task: Decrypt what this Turing machine is doing (i.e. find the language
that this Turing machine accepts). Our alphabet is {0, 1}.

State 0 1 �
q0 (q1, �, R) reject accept
q1 (q1, 0, R) (q1, 1, R) (q2, �, L)
q2 reject (q3, �, L) reject
q3 (q3, 0, L) (q3, 1, L) (q0, �, R)

Answer: {0n1n : n ∈ N}. (this is the same turing machine as Q1
Assignment 1)

5 / 20



Turing machines are back! :D

State 0 1 �
q0 (q1, �, R) reject accept
q1 (q1, 0, R) (q1, 1, R) (q2, �, L)
q2 reject (q3, �, L) reject
q3 (q3, 0, L) (q3, 1, L) (q0, �, R)

Task: Open Microsoft Edge (or whatever your favourite browser is :D), go
to http://turingmachinesimulator.com/shared/bkuepwxgdh.
Bookmark the website. Put on your favourite music. Read the code. Click
“Compile”. Try a few different inputs and see how the Turing machine
runs. Convince yourself that this Turing machine indeed accepts exactly
{0n1n : n ∈ N}. Go grab a snack in the meantime.

6 / 20

http://turingmachinesimulator.com/shared/bkuepwxgdh


Turing machines are back! :D

State 0 1 �
q0 (q1, �, R) reject accept
q1 (q1, 0, R) (q1, 1, R) (q2, �, L)
q2 reject (q3, �, L) reject
q3 (q3, 0, L) (q3, 1, L) (q0, �, R)

Task: Open Microsoft Edge (or whatever your favourite browser is :D), go
to http://turingmachinesimulator.com/shared/bkuepwxgdh.
Bookmark the website. Put on your favourite music. Read the code. Click
“Compile”. Try a few different inputs and see how the Turing machine
runs. Convince yourself that this Turing machine indeed accepts exactly
{0n1n : n ∈ N}. Also convince yourself that this is an O(n2) Turing
machine: given an input string of length n, this Turing machine takes at
most O(n2) steps to halt (no matter if it accepts or rejects).

7 / 20

http://turingmachinesimulator.com/shared/bkuepwxgdh


Turing machines are back! :D

State 0 1 �
q0 (q1, �, R) reject accept
q1 (q1, 0, R) (q1, 1, R) (q2, �, L)
q2 reject (q3, �, L) reject
q3 (q3, 0, L) (q3, 1, L) (q0, �, R)

Task: Open Microsoft Edge (or whatever your favourite browser is :D), go
to http://turingmachinesimulator.com/shared/bkuepwxgdh.
Bookmark the website. Put on your favourite music. Read the code. Click
“Compile”. Try a few different inputs and see how the Turing machine
runs. Convince yourself that this Turing machine indeed accepts exactly
{0n1n : n ∈ N}. Also convince yourself that this is an O(n2) Turing
machine: given an input string of length n, this Turing machine takes at
most O(n2) steps to halt (no matter if it accepts or rejects).

8 / 20

http://turingmachinesimulator.com/shared/bkuepwxgdh


Turing machines are back! :D

But we can do better, in fact! There is an O(n log n) way to decide
whether a given input is in 0n1n : n ∈ N. Here is the high-level idea:
On input w , we do the following:

1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat the following as long as there is both a 0 and 1 on the tape:

2.1 Scan across the tape, checking if the total number of 0s and 1s
remaining is odd. If it is odd, reject.

2.2 Scan again across the tape, crossing off every other 0 starting with the
first 0, and then crossing off every other 1 starting with the first 1.

3. If the tape doesn’t have any 0s or 1s, accept. Else, reject.
Task: Try this procedure (by hand) on input 0000011111 and on input
000001111.

9 / 20



Turing machines are back! :D

1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat the following as long as there is both a 0 and 1 on the tape:

2.1 Scan across the tape, checking if the total number of 0s and 1s
remaining is odd. If it is odd, reject.

2.2 Scan again across the tape, crossing off every other 0 starting with the
first 0, and then crossing off every other 1 starting with the first 1.

3. If the tape doesn’t have any 0s or 1s, accept. Else, reject.
The above procedure actually takes O(n log n) time for the Turing
machine, because we cross off at least half of all the symbols on each
iteration of 2, so 2 runs at most log n times (of course i’m being informal
here).
But either way, it’s more efficient now! yay2

You may try it out at
http://turingmachinesimulator.com/shared/prsswhkkyb.

2yea optimizing turing machine code is definitely something i would do as a career.
10 / 20

http://turingmachinesimulator.com/shared/prsswhkkyb


i dunno... break time before we get into
P-reducibility?
hmm... i’m not sure if youse prefer watching Turing machines execute,
over playing with computable and c.e. sets!3

Trivia time!
What ingredients are in this “drink”?a

Answer: i dunno, i haven’t yet made the drink when making these slides.
ai dunno if this classifies as a drink...

3i don’t think you want to ever see the symbol ϕ again.
11 / 20



i dunno... break time before we get into
P-reducibility?
hmm... i’m not sure if youse prefer watching Turing machines execute,
over playing with computable and c.e. sets!3

Trivia time!
What ingredients are in this “drink”?a

Answer: i dunno, i haven’t yet made the drink when making these slides.
ai dunno if this classifies as a drink...

3i don’t think you want to ever see the symbol ϕ again.
11 / 20



some preface as we’re transitioning into a different
part of the course, probably

Remember when we were talking about computability of sets of natural
numbers A ⊆ N?

Now we are talking about computability of languages L ⊆ Σ∗, which are
sets of strings.

But really, they’re the same thing! Each string has a G*del number. When
we talk about a language L ⊆ Σ∗, we can instead be talking about

A = {e ∈ N : e is the G*dot number for some string in L}

and vice versa.

12 / 20



some preface as we’re transitioning into a different
part of the course, probably

Remember when we were talking about computability of sets of natural
numbers A ⊆ N?

Now we are talking about computability of languages L ⊆ Σ∗, which are
sets of strings.

But really, they’re the same thing! Each string has a G*del number. When
we talk about a language L ⊆ Σ∗, we can instead be talking about

A = {e ∈ N : e is the G*dot number for some string in L}

and vice versa.

13 / 20



P-reducibility :/

Task: What does the P in “P-reducibility” stand for? Answer: Psushi
paulinomial.

Definition: Let A, B ⊆ Σ∗ be languages. We say A ≤p B (read “A
polynomially reduces to B”) when there exists a polynomial-time
computable f : Σ∗ → Σ∗ such that

x ∈ A⇔ f (x) ∈ B.

Fact:
A language is polynomial-time computable on your computer if
and only if it is polynomial-time computable by a Turing machine.

- Chungus, 2077 (don’t quote the chungus on that)

14 / 20



P-reducibility :/

Definition: Let A, B ⊆ Σ∗ be languages. We say A ≤p B (read “A
polynomially reduces to B”) when there exists a polynomial-time
computable f : Σ∗ → Σ∗ such that

x ∈ A⇔ f (x) ∈ B.

Theorem
If A ≤p B and B ≤p C, then A ≤p C.

Task: Prove this.

15 / 20



P-reducibility :/
Definition: Let A, B ⊆ Σ∗ be languages. We say A ≤p B (read “A
polynomially reduces to B”) when there exists a polynomial-time
computable f : Σ∗ → Σ∗ such that

x ∈ A⇔ f (x) ∈ B.

Theorem
If A ≤p B and B ≤p C, then A ≤p C.

Proof.
Since A ≤p B, let f be a polynomial time computable function such that
x ∈ A⇔ f (x) ∈ B. Since B ≤p C , let g be a polynomial time computable
function such that y ∈ B ⇔ g(y) ∈ C . Then g ◦ f is polynomial-time
computable (why?), and

x ∈ A⇔ f (x) ∈ B ⇔ g(f (x)) ∈ C .

By definition, this means A ≤p C .
16 / 20



P-reducibility :/

Definition: Let A, B ⊆ Σ∗ be languages. We say A ≤p B (read “A
polynomially reduces to B”) when there exists a polynomial-time
computable f : Σ∗ → Σ∗ such that

x ∈ A⇔ f (x) ∈ B.

Task: Guess what A ≡p B means!
Answer: A ≡p B when A ≤p B and B ≤p A.

17 / 20



P-reducibility :/

Definition: Let A, B ⊆ Σ∗ be languages. We say A ≤p B (read “A
polynomially reduces to B”) when there exists a polynomial-time
computable f : Σ∗ → Σ∗ such that

x ∈ A⇔ f (x) ∈ B.

Task: Guess what A ≡p B means!
Answer: A ≡p B when A ≤p B and B ≤p A.

17 / 20



P-reducibility :/
Definition: Let A, B ⊆ Σ∗ be languages. We say A ≤p B (read “A
polynomially reduces to B”) when there exists a polynomial-time
computable f : Σ∗ → Σ∗ such that

x ∈ A⇔ f (x) ∈ B.

Task: Prove the following theorem, and then try solving P = NP or
something:

Theorem
Let A, B, C be languages. Then

1. A ≡p A.
2. A ≡p B implies B ≡p A.
3. A ≡p B and B ≡p C implies A ≡p C

So ≡p is an equivalence relation on the set of languages.

18 / 20



P-reducibility :/
Theorem
Let A, B, C be languages. Then

1. A ≡p A.
2. A ≡p B implies B ≡p A.
3. A ≡p B and B ≡p C implies A ≡p C

So ≡p is an equivalence relation on the set of languages.
Proof.

1. The function f (x) = x is very polynomial-time computable, and
x ∈ A⇔ f (x) ∈ A, so A ≤p A. Bruh. A ≤p A, so A ≡p A.

2. A ≡p B means A ≤p B and B ≤p A. Bruh. B ≤p A and A ≤p B
means B ≡p A.

3. We have A ≤p B, B ≤p A, B ≤p C , and C ≤p B. By the theorem
we’ve proven earlier, A ≤p B and B ≤p C imply A ≤p C . Similarly
C ≤p B and B ≤p A imply C ≤p A. So A ≡p C .

19 / 20



Homework cheating time!

I’m sure you hate the letter p by now. Why don’t we also throw in the
letter P?
Theorem
If A ≤p B and B ∈ P, then A ∈ P.

Task: Prove this. Then submit your proof for this under Question 5 of
Assignment 3.
(or you know, the proof is actually in the textbook! page 251.)

20 / 20


