

Paul "sushi_enjoyer" Zhang

University of Humongus Chungus Amogus

March 3, 2021

Learning objectives this tutorial

By the end of this tutorial, you should...

- Have turingmachinesimulator.com bookmarked in Microsoft Edge (or whichever browser you use).
- Feel great, because you will probably never have to touch upon any computability theory again.¹
- Understand *p*-reducibility and have a practical example in the back of your mind.
- Fall in love with polynomials. They are so nice!

(no readings this week cuz we didn't really go over anything new)

¹Oh wait! You have an assignment due on computability theory. ;-; If you want unauthorized aids help, stay for my office hours! :D

More Turing Machines.

Task: Answer the following: do you like optimwizing cowde? uwu

Answer: Of course you do.

More Turing Machines.

Task: Answer the following: do you like optimwizing cowde? uwu

Answer: Of course you do.

Task: Decrypt what this Turing machine is doing (i.e. find the language that this Turing machine accepts). Our alphabet is $\{0, 1\}$.

State	0	1	
q_0	(q_1, \Box, R)	reject	accept
q_1	(q ₁ , 0, R)	$(q_1, 1, R)$	(<i>q</i> ₂ , □, L)
q_2	reject	(<i>q</i> ₃ , □, L)	reject
<i>q</i> ₃	(q ₃ , 0, L)	(q ₃ , 1, L)	(<i>q</i> ₀ , □, R)

Hint:

Task: Decrypt what this Turing machine is doing (i.e. find the language that this Turing machine accepts). Our alphabet is $\{0, 1\}$.

State	0	1	
q_0	(q_1, \Box, R)	reject	accept
q_1	(q ₁ , 0, R)	$(q_1, 1, R)$	(q₂, □, L)
q_2	reject	(q_3, \Box, L)	reject
q 3	(q ₃ , 0, L)	$(q_3, 1, L)$	(<i>q</i> ₀ , □, R)

Answer: $\{0^n1^n : n \in \mathbb{N}\}$. (this is the same turing machine as Q1 Assignment 1)

State	0	1	
q_0	(q_1, \Box, R)	reject	accept
q_1	(q ₁ , 0, R)	$(q_1, 1, R)$	(<i>q</i> ₂ , □, L)
q_2	reject	(<i>q</i> ₃ , □, L)	reject
<i>q</i> ₃	(q ₃ , 0, L)	$(q_3, 1, L)$	(<i>q</i> ₀ , □, R)

Task: Open Microsoft Edge (or whatever your favourite browser is :D), go to http://turingmachinesimulator.com/shared/bkuepwxgdh. Bookmark the website. Put on your favourite music. Read the code. Click "Compile". Try a few different inputs and see how the Turing machine runs. Convince yourself that this Turing machine indeed accepts exactly $\{0^{n}1^{n} : n \in \mathbb{N}\}$. Go grab a snack in the meantime.

Task: Open Microsoft Edge (or whatever your favourite browser is :D), go to http://turingmachinesimulator.com/shared/bkuepwxgdh. Bookmark the website. Put on your favourite music. Read the code. Click "Compile". Try a few different inputs and see how the Turing machine runs. Convince yourself that this Turing machine indeed accepts exactly $\{0^n1^n : n \in \mathbb{N}\}$. Also convince yourself that this is an $O(n^2)$ Turing machine: given an input string of length n, this Turing machine takes at most $O(n^2)$ steps to halt (no matter if it accepts or rejects).

Task: Open Microsoft Edge (or whatever your favourite browser is :D), go to http://turingmachinesimulator.com/shared/bkuepwxgdh. Bookmark the website. Put on your favourite music. Read the code. Click "Compile". Try a few different inputs and see how the Turing machine runs. Convince yourself that this Turing machine indeed accepts exactly $\{0^n1^n : n \in \mathbb{N}\}$. Also convince yourself that this is an $O(n^2)$ Turing machine: given an input string of length n, this Turing machine takes at most $O(n^2)$ steps to halt (no matter if it accepts or rejects).

But we can do better, in fact! There is an $O(n \log n)$ way to decide whether a given input is in $0^n 1^n : n \in \mathbb{N}$. Here is the high-level idea: On input w, we do the following:

- 1. Scan across the tape and reject if a 0 is found to the right of a 1.
- 2. Repeat the following as long as there is both a 0 and 1 on the tape:
 - 2.1 Scan across the tape, checking if the total number of 0s and 1s remaining is odd. If it is odd, *reject*.
 - **2.2** Scan again across the tape, crossing off every other 0 starting with the first 0, and then crossing off every other 1 starting with the first 1.
- 3. If the tape doesn't have any 0s or 1s, accept. Else, reject,

Task: Try this procedure (by hand) on input 0000011111 and on input 000001111.

- 1. Scan across the tape and reject if a 0 is found to the right of a 1.
- 2. Repeat the following as long as there is both a 0 and 1 on the tape:
 - 2.1 Scan across the tape, checking if the total number of 0s and 1s remaining is odd. If it is odd, *reject*.
 - **2.2** Scan again across the tape, crossing off every other 0 starting with the first 0, and then crossing off every other 1 starting with the first 1.
- 3. If the tape doesn't have any 0s or 1s, accept. Else, reject.

The above procedure actually takes $O(n \log n)$ time for the Turing machine, because we cross off at least half of all the symbols on each iteration of 2, so 2 runs at most log *n* times (of course i'm being informal here).

But either way, it's more efficient now! yay²

You may try it out at

http://turingmachinesimulator.com/shared/prsswhkkyb.

²yea optimizing turing machine code is definitely something i would do as a career.

i dunno... break time before we get into *P*-reducibility?

hmm... i'm not sure if youse prefer watching Turing machines execute, over playing with computable and c.e. sets!³

Trivia time!

What ingredients are in this "drink"?^a

Answer: i dunno, i haven't yet made the drink when making these slides.

^ai dunno if this classifies as a drink...

³i don't think you want to ever see the symbol arphi again.

i dunno... break time before we get into *P*-reducibility?

hmm... i'm not sure if youse prefer watching Turing machines execute, over playing with computable and c.e. sets!³

Trivia time!

What ingredients are in this "drink"?^a

Answer: i dunno, i haven't yet made the drink when making these slides.

^ai dunno if this classifies as a drink...

³i don't think you want to ever see the symbol arphi again.

some preface as we're transitioning into a different part of the course, probably

Remember when we were talking about computability of sets of natural numbers $A \subseteq \mathbb{N}$?

Now we are talking about computability of languages $L \subseteq \Sigma^*$, which are sets of strings.

But really, they're the same thing! Each string has a G*del number. When we talk about a language $L \subseteq \Sigma^*$, we can instead be talking about

 $A = \{e \in \mathbb{N} : e \text{ is the } G^* \text{dot number for some string in } L\}$

and vice versa.

some preface as we're transitioning into a different part of the course, probably

Remember when we were talking about computability of sets of natural numbers $A \subseteq \mathbb{N}$?

Now we are talking about computability of languages $L \subseteq \Sigma^*$, which are sets of strings.

But really, they're the same thing! Each string has a G*del number. When we talk about a language $L \subseteq \Sigma^*$, we can instead be talking about

 $A = \{e \in \mathbb{N} : e \text{ is the } G^* \text{dot number for some string in } L\}$

and vice versa.

Task: What does the *P* in "*P*-reducibility" stand for? **Answer:** Psushi paulinomial.

Definition: Let $A, B \subseteq \Sigma^*$ be languages. We say $A \leq_p B$ (read "A polynomially reduces to B") when there exists a polynomial-time computable $f : \Sigma^* \to \Sigma^*$ such that

$$x \in A \Leftrightarrow f(x) \in B.$$

Fact:

A language is polynomial-time computable on your computer if and only if it is polynomial-time computable by a Turing machine.

- Chungus, 2077 (don't quote the chungus on that)

Definition: Let $A, B \subseteq \Sigma^*$ be languages. We say $A \leq_p B$ (read "A polynomially reduces to B") when there exists a polynomial-time computable $f : \Sigma^* \to \Sigma^*$ such that

 $x \in A \Leftrightarrow f(x) \in B.$

Theorem

If $A \leq_p B$ and $B \leq_p C$, then $A \leq_p C$.

Task: Prove this.

Definition: Let $A, B \subseteq \Sigma^*$ be languages. We say $A \leq_p B$ (read "A polynomially reduces to B") when there exists a polynomial-time computable $f : \Sigma^* \to \Sigma^*$ such that

 $x \in A \Leftrightarrow f(x) \in B.$

Theorem

If $A \leq_p B$ and $B \leq_p C$, then $A \leq_p C$.

Proof.

Since $A \leq_p B$, let f be a polynomial time computable function such that $x \in A \Leftrightarrow f(x) \in B$. Since $B \leq_p C$, let g be a polynomial time computable function such that $y \in B \Leftrightarrow g(y) \in C$. Then $g \circ f$ is polynomial-time computable (why?), and

$$x \in A \Leftrightarrow f(x) \in B \Leftrightarrow g(f(x)) \in C.$$

By definition, this means $A \leq_p C$.

Definition: Let $A, B \subseteq \Sigma^*$ be languages. We say $A \leq_p B$ (read "A polynomially reduces to B") when there exists a polynomial-time computable $f : \Sigma^* \to \Sigma^*$ such that

$$x \in A \Leftrightarrow f(x) \in B.$$

Task: Guess what $A \equiv_{p} B$ means! Answer: $A \equiv_{p} B$ when $A \leq_{p} B$ and $B \leq_{p} A$

Definition: Let $A, B \subseteq \Sigma^*$ be languages. We say $A \leq_p B$ (read "A polynomially reduces to B") when there exists a polynomial-time computable $f : \Sigma^* \to \Sigma^*$ such that

$$x \in A \Leftrightarrow f(x) \in B.$$

Task: Guess what $A \equiv_p B$ means! **Answer:** $A \equiv_p B$ when $A \leq_p B$ and $B \leq_p A$.

Definition: Let $A, B \subseteq \Sigma^*$ be languages. We say $A \leq_p B$ (read "A polynomially reduces to B") when there exists a polynomial-time computable $f : \Sigma^* \to \Sigma^*$ such that

 $x \in A \Leftrightarrow f(x) \in B.$

Task: Prove the following theorem, and then try solving P = NP or something:

Theorem

Let A, B, C be languages. Then

- 1. $A \equiv_p A$.
- 2. $A \equiv_p B$ implies $B \equiv_p A$.

3. $A \equiv_p B$ and $B \equiv_p C$ implies $A \equiv_p C$

 $So \equiv_p$ is an equivalence relation on the set of languages.

Theorem

Let A, B, C be languages. Then

1. $A \equiv_p A$.

- 2. $A \equiv_p B$ implies $B \equiv_p A$.
- 3. $A \equiv_p B$ and $B \equiv_p C$ implies $A \equiv_p C$

 $So \equiv_p$ is an equivalence relation on the set of languages. **Proof.**

- 1. The function f(x) = x is very polynomial-time computable, and $x \in A \Leftrightarrow f(x) \in A$, so $A \leq_p A$. Bruh. $A \leq_p A$, so $A \equiv_p A$.
- 2. $A \equiv_p B$ means $A \leq_p B$ and $B \leq_p A$. Bruh. $B \leq_p A$ and $A \leq_p B$ means $B \equiv_p A$.
- 3. We have $A \leq_p B$, $B \leq_p A$, $B \leq_p C$, and $C \leq_p B$. By the theorem we've proven earlier, $A \leq_p B$ and $B \leq_p C$ imply $A \leq_p C$. Similarly $C \leq_p B$ and $B \leq_p A$ imply $C \leq_p A$. So $A \equiv_p C$.

Homework cheating time!

I'm sure you hate the letter p by now. Why don't we also throw in the letter P?

Theorem

If $A \leq_p B$ and $B \in P$, then $A \in P$.

Task: Prove this. Then submit your proof for this under Question 5 of Assignment 3.

(or you know, the proof is actually in the textbook! page 251.)